AskDefine | Define pigment

Dictionary Definition

pigment n : dry coloring matter (especially an insoluble powder to be mixed with a liquid to produce paint etc)


1 acquire pigment; become colored or imbued
2 color or dye with a pigment; "pigment a photograph"

User Contributed Dictionary



  1. Any color in plant or animal cells
  2. A dry colorant, usually an insoluble powder


any color in plant or animal cells
  • Finnish: pigmentti, väriaine
  • Hungarian: pigment
a dry colorant, usually an insoluble powder


  1. To add color or pigment to something.

See also

Extensive Definition

For the drug referred to as "pigment," see black tar heroin.
A pigment is a material that changes the color of light it reflects as the result of selective color absorption. This physical process differs from fluorescence, phosphorescence, and other forms of luminescence, in which the material itself emits light. Many materials selectively absorb certain wavelengths of light. Materials that humans have chosen and developed for use as pigments usually have special properties that make them ideal for coloring other materials. A pigment must have a high tinting strength relative to the materials it colors. It must be stable in solid form at ambient temperatures.
For industrial applications, as well as in the arts, permanence and stability are desirable properties. Pigments that are not permanent are called fugitive. Fugitive pigments fade over time, or with exposure to light, while some eventually blacken.
Pigments are used for coloring paint, ink, plastic, fabric, cosmetics, food and other materials. Most pigments used in manufacturing and the visual arts are dry colourants, usually ground into a fine powder. This powder is added to a vehicle (or matrix), a relatively neutral or colorless material that acts as a binder.
A distinction is usually made between a pigment, which is insoluble in the vehicle (resulting in a suspension), and a dye, which either is itself a liquid or is soluble in its vehicle (resulting in a solution). A colorant can be both a pigment and a dye depending on the vehicle it is used in. In some cases, a pigment can be manufactured from a dye by precipitating a soluble dye with a metallic salt. The resulting pigment is called a lake pigment.

Physical basis

Pigments appear the colors they are because they selectively reflect and absorb certain wavelengths of light. White light is a roughly equal mixture of the entire visible spectrum of light. When this light encounters a pigment, some wavelengths are absorbed by the chemical bonds and substituents of the pigment, and others are reflected. This new reflected light spectrum creates the appearance of a color. Ultramarine reflects blue light, and absorbs other colors. Pigments, unlike fluorescent or phosphorescent substances, can only subtract wavelengths from the source light, never add new ones.
The appearance of pigments is intimately connected to the color of the source light. Sunlight has a high color temperature, and a fairly uniform spectrum, and is considered a standard for white light. Artificial light sources tend to have great peaks in some parts of their spectrum, and deep valleys in others. Viewed under these conditions, pigments will appear different colors.
Color spaces used to represent colors numerically must specify their light source. Lab color measurements, unless otherwise noted, assume that the measurement was taken under a D65 light source, or "Daylight 6500 K", which is roughly the color temperature of sunlight.
Other properties of a color, such as its saturation or lightness, may be determined by the other substances that accompany pigments. Binders and fillers added to pure pigment chemicals also have their own reflection and absorption patterns, which can affect the final spectrum. Likewise, in pigment/binder mixtures, individual rays of light may not encounter pigment molecules, and may be reflected as is. These stray rays of source light contribute to the saturation of the color. Pure pigment allows very little white light to escape, producing a highly saturated color. A small quantity of pigment mixed with a lot of white binder, however, will appear desaturated and pale, due to the high quantity of escaping white light.

Biological pigments

Spain's conquest of a New World empire in the 16th century introduced new pigments and colors to peoples on both sides of the Atlantic. Carmine, a dye and pigment derived from a parasitic insect found in Central and South America, attained great status and value in Europe. Produced from harvested, dried, and crushed cochineal insects, carmine could be used in fabric dye, body paint, or in its solid lake form, almost any kind of paint or cosmetic.
Natives of Peru had been producing cochineal dyes for textiles since at least 700 CE, but Europeans had never seen the color before. When the Spanish invaded the Aztec empire in what is now Mexico, they were quick to exploit the color for new trade opportunities. Carmine became the region's second most valuable export next to silver. Pigments produced from the cochineal insect gave the Catholic cardinals their vibrant robes and the English "Redcoats" their distinctive uniforms. The true source of the pigment, an insect, was kept secret until the 18th century, when biologists discovered the source.
While Carmine was popular in Europe, blue remained an exclusive color, associated with wealth and status. The 17th century Dutch master Johannes Vermeer often made lavish use of lapis lazuli, along with Carmine and Indian Yellow, in his vibrant paintings.

Development of synthetic pigments

The earliest known pigments were natural minerals. Natural iron oxides give a range of colors and are found in many Paleolithic and Neolithic cave paintings. Two examples include Red Ochre, anhydrous Fe2O3, and the hydrated Yellow Ochre (Fe2O3.H2O). Charcoal, or carbon black, has also been used as a black pigment since prehistoric times.
Two of the first synthetic pigments were white lead (basic lead carbonate, (PbCO3)2Pb(OH)2) and blue frit (Egyptian Blue). White lead is made by combining lead with vinegar (acetic acid, CH3COOH) in the presence of CO2. Blue frit is calcium copper silicate and was made from glass colored with a copper ore, such as malachite. These pigments were used as early as the second millennium BCE.
The Industrial and Scientific Revolutions brought a huge expansion in the range of synthetic pigments, pigments that are manufactured or refined from naturally occurring materials, available both for manufacturing and artistic expression. Because of the expense of Lapis Lazuli, much effort went into finding a less costly blue pigment.
Prussian Blue was the first modern synthetic pigment, discovered by accident in 1704. By the early 19th century, synthetic and metallic blue pigments had been added to the range of blues, including French ultramarine, a synthetic form of lapis lazuli, and the various forms of Cobalt and Cerulean Blue. In the early 20th century, organic chemistry added Phthalo Blue, a synthetic, organic pigment with overwhelming tinting power.
Discoveries in color science created new industries and drove changes in fashion and taste. The discovery in 1856 of mauveine, the first aniline dye, was a forerunner for the development of hundreds of synthetic dyes and pigments. Mauveine was discovered by an 18-year-old chemist named William Henry Perkin, who went on to exploit his discovery in industry and become wealthy. His success attracted a generation of followers, as young scientists went into organic chemistry to pursue riches. Within a few years, chemists had synthesized a substitute for madder in the production of Alizarin Crimson. By the closing decades of the 19th century, textiles, paints, and other commodities in colors such as red, crimson, blue, and purple had become affordable.
Development of chemical pigments and dyes helped bring new industrial prosperity to Germany and other countries in northern Europe, but it brought dissolution and decline elsewhere. In Spain's former New World empire, the production of cochineal colors employed thousands of low-paid workers. The Spanish monopoly on cochineal production had been worth a fortune until the early 1800s, when the Mexican War of Independence and other market changes disrupted production. Organic chemistry delivered the final blow for the cochineal color industry. When chemists created inexpensive substitutes for carmine, an industry and a way of life went into steep decline.

New sources for historic pigments

Before the Industrial Revolution, many pigments were known by the location where they were produced. Pigments based on minerals and clays often bore the name of the city or region where they were mined. Raw Sienna and Burnt Sienna came from Siena, Italy, while Raw Umber and Burnt Umber came from Umbria. These pigments were among the easiest to synthesize, and chemists created modern colors based on the originals that were more consistent than colors mined from the original ore bodies. But the place names remained.
Historically and culturally, many famous natural pigments have been replaced with synthetic pigments, while retaining historic names. In some cases the original color name has shifted in meaning, as a historic name has been applied to a popular modern color. By convention, a contemporary mixture of pigments that replaces a historical pigment is indicated by calling the resulting color a hue, but manufacturers are not always careful in maintaining this distinction. The following examples illustrate the shifting nature of historic pigment names:
Before the development of synthetic pigments, and the refinement of techniques for extracting mineral pigments, batches of color were often inconsistent. With the development of a modern color industry, manufacturers and professionals have cooperated to create international standards for identifying, producing, measuring, and testing colors.
First published in 1905, the Munsell Color System became the foundation for a series of color models, providing objective methods for the measurement of color. The Munsell system describes a color in three dimensions, hue, value (lightness), and chroma (color purity), where chroma is the difference from gray at a given hue and value.
By the middle years of the 20th century, standardized methods for pigment chemistry were available, part of an international movement to create such standards in industry. The International Organization for Standardization (ISO) develops technical standards for the manufacture of pigments and dyes. ISO standards define various industrial and chemical properties, and how to test for them. The principal ISO standards that relate to all pigments are as follows:
  • ISO-787 General methods of test for pigments and extenders
  • ISO-8780 Methods of dispersion for assessment of dispersion characteristics
Other ISO standards pertain to particular classes or categories of pigments, based on their chemical composition, such as ultramarine pigments, titanium dioxide, iron oxide pigments, and so forth.
Many manufacturers of paints, inks, textiles, plastics, and colors have voluntarily adopted the Colour Index International (CII) as a standard for identifying the pigments that they use in manufacturing particular colors. First published in 1925, and now published jointly on the web by the Society of Dyers and Colourists (United Kingdom) and the American Association of Textile Chemists and Colorists (USA), this index is recognized internationally as the authoritative reference on colorants. It encompasses more than 27,000 products under more than 13,000 generic color index names.
In the CII schema, each pigment has a generic index number that identifies it chemically, regardless of proprietary and historic names. For example, Phthalo Blue has been known by a variety of generic and proprietary names since its discovery in the 1930s. In much of Europe, phthalocyanine blue is better known as Helio Blue, or by a proprietary name such as Winsor Blue. An American paint manufacturer, Grumbacher, registered an alternate spelling (Thalo Blue) as a trademark. Colour Index International resolves all these conflicting historic, generic, and proprietary names so that manufacturers and consumers can identify the pigment (or dye) used in a particular color product. In the CII, all Phthalo Blue pigments are designated by a generic colour index number as either PB15 or PB36, short for pigment blue 15 and pigment blue 16. (The two forms of Phthalo Blue, PB15 and PB16, reflect slight variations in molecular structure that produce a slightly more greenish or reddish blue.)

Scientific and technical issues

Selection of a pigment for a particular application is determined by cost, and by the physical properties and attributes of the pigment itself. For example, a pigment that is used to color glass must have very high heat stability in order to survive the manufacturing process; but, suspended in the glass vehicle, its resistance to alkali or acidic materials is not an issue. In artistic paint, heat stability is less important, while lightfastness and toxicity are greater concerns.
The following are some of the attributes of pigments that determine their suitability for particular manufacturing processes and applications:
  • Lightfastness
  • Heat stability
  • Toxicity
  • Tinting strength
  • Staining
  • Dispersion
  • Opacity or transparency
  • Resistance to alkalis and acids
  • Reactions and interactions between pigments


Pure pigments reflect light in a very specific way that cannot be precisely duplicated by the discrete light emitters in a computer display. However, by making careful measurements of pigments, close approximations can be made. The Munsell Color System provides a good conceptual explanation of what is missing. Munsell devised a system that provides an objective measure of color in three dimensions: hue, value (or lightness), and chroma. Computer displays in general are unable to show the true chroma of many pigments, but the hue and lightness can be reproduced with relative accuracy. However, when the gamma of a computer display deviates from the reference value, the hue is also systematically biased.
The following approximations assume a display device at gamma 2.2, using the sRGB color space. The further a display device deviates from these standards, the less accurate these swatches will be. Swatches are based on the average measurements of several lots of single-pigment watercolor paints, converted from Lab color space to sRGB color space for viewing on a computer display. Different brands and lots of the same pigment may vary in color. Furthermore, pigments have inherently complex reflectance spectra that will render their color appearance greatly different depending on the spectrum of the source illumination; a property called metamerism. Averaged measurements of pigment samples will only yield approximations of their true appearance under a specific source of illumination. Computer display systems use a technique called chromatic adaptation transforms to emulate the correlated color temperature of illumination sources, and cannot perfectly reproduce the intricate spectral combinations originally seen. In many cases the perceived color of a pigment falls outside of the gamut of computer displays and a method called gamut mapping is used to approximate the true appearance. Gamut mapping trades off any one of Lightness, Hue or Saturation accuracy to render the color on screen, depending on the priority chosen in the conversion's ICC rendering intent.



pigment in Arabic: خضاب
pigment in Azerbaijani: Piqment
pigment in Catalan: Pigment
pigment in Czech: Pigment
pigment in Danish: Pigment
pigment in German: Pigment
pigment in Spanish: Pigmento (pintura)
pigment in Esperanto: Pigmento
pigment in Persian: رنگ‌دانه
pigment in French: Pigment
pigment in Galician: Pigmento
pigment in Croatian: Pigment
pigment in Indonesian: Pigmen
pigment in Italian: Pigmento
pigment in Hebrew: פיגמנט
pigment in Lithuanian: Pigmentas
pigment in Dutch: Pigment
pigment in Japanese: 顔料
pigment in Norwegian Nynorsk: Pigment
pigment in Occitan (post 1500): Pigment
pigment in Oromo: Pigment
pigment in Polish: Pigment
pigment in Portuguese: Pigmento
pigment in Romanian: Pigment
pigment in Simple English: Pigment
pigment in Slovak: Pigment (maliarstvo)
pigment in Serbian: pigment
pigment in Finnish: Pigmentti
pigment in Swedish: Pigment
pigment in Turkish: Pigment
pigment in Chinese: 色素

Synonyms, Antonyms and Related Words

Adrianople red, Alice blue, Arabian red, Argos brown, Bordeaux, Brunswick black, Brunswick blue, Burgundy, Capri blue, Cassel yellow, Chinese blue, Chinese white, Claude tint, Cologne brown, Columbian red, Congo rubine, Copenhagen blue, Dresden blue, Dutch orange, Egyptian green, English red, French blue, French gray, Gobelin blue, Goya, Guinea green, India pink, Indian red, Irish green, Janus green, Kelly green, Kendal green, Kildare green, Lincoln green, Majolica earth, Mars orange, Mars violet, Mexican red, Mitis green, Montpellier green, Nile green, Paris green, Paris yellow, Persian blue, Persian red, Pompeian blue, Prussian blue, Prussian red, Quaker green, Roman umber, Saint Benoit, Saxe blue, Saxony green, Schweinfurt green, Spanish green, Spanish ocher, Tanagra, Titian, Turkey red, Turkey umber, Tyrian purple, Vandyke red, Vienna green, Wedgwood blue, Wedgwood green, absinthe, acid yellow, acier, acorn, air brush, alabaster, alesan, alizarin brown, amber, amethyst, amidonaphthol red, aniline black, aniline blue, annatto, anthracene brown, anthragallol, antique brown, antique gold, apple green, apply paint, apricot, aqua green, aquamarine, arsenic yellow, art paper, ash, ash gray, aureolin, autumn leaf, avocado green, azo blue, azo-orange, azulene, azure, azurite blue, baby blue, barium sulfate, bat, bedaub, bedizen, begild, benzoazurine, beryl, beryl green, besmear, bice, biscuit, bister, blanc fixe, bleu celeste, blond, blue black, blue turquoise, bone black, bone brown, bottle green, bracken, bright rose, brush, brush on paint, buff, bunny brown, burgundy, burnt Roman ocher, burnt almond, burnt carmine, burnt ocher, burnt rose, burnt sienna, butter, cadet blue, cadmium orange, cadmium yellow, cafe noir, calamine blue, calcimine, camera lucida, camera obscura, canary, canvas, carbon black, cardinal, carmine, carnation, carnelian, carotene, celadon, cerulean, chalk, chamois, champagne, charcoal, chartreuse, chartreuse green, chartreuse tint, chartreuse yellow, chestnut, chrome, chrome black, chrome lemon, chrome orange, chrome oxide green, chrome red, chrome yellow, chromogen, chrysophenin, chrysoprase green, ciba blue, cinder gray, cinnabar, citron green, civette green, claret, clematis, cloud gray, coat, coat of paint, coating, cobalt, cobalt green, cochineal, coconut, color, color filter, color gelatin, colorant, coloring, complexion, copper, copper red, coptic, corbeau, cordovan, cornflower, cover, cramoisie, crash, crayon, cream, cresol red, crimson, crocus, crystal gray, cucumber green, cyan, cyanine blue, cypress green, dab, dahlia, damask, damson, dandelion, daub, dead leaf, dead-color, deep-dye, delft blue, dip, distemper, doeskin, double-dye, dove gray, drab, drawing paper, drawing pencil, drier, drop black, duck green, dun, dye, dyestuff, easel, eggshell, emblazon, emerald, emeraude, enamel, engild, exterior paint, face, faded rose, fast-dye, fiesta, fir, fire red, fixative, flat coat, flat wash, flax, flesh, flesh color, flesh red, floor enamel, foliage brown, fox, fresco, fuchsia, fuchsine, gamboge, garter blue, gild, glauconite, glaucous, glaucous blue, glaucous gray, glaucous green, glaze, gloss, golden pheasant, grain, grape, grass green, green ocher, grege, ground, gun metal, hazel, helianthin, heliotrope, henna, holly green, honey, honey yellow, hue, hyacinth, hyacinth red, illuminate, imbue, imperial purple, incarnadine, indigo, indigo white, infrared, ingrain, interior paint, iron gray, iron red, isamine blue, ivory, ivory black, jade, japan, jockey, jonquil, jouvence blue, lacquer, lake, lampblack, lapis lazuli blue, lavender, lavender blue, lay figure, lay on color, lead gray, leaf green, leather, lemon chrome, light red, lilac, liver brown, livid pink, lobster, madder, madder blue, madder crimson, madder lake, madder orange, madder pink, madder rose, madder yellow, magenta, maize, malachite green, mallow, mallow pink, mandarin, maple sugar, marigold, marine blue, maroon, massicot, maulstick, mauve, meadow brook, medium, melon, metanil yellow, methyl green, methyl orange, methyl yellow, methylene azure, methylene blue, mignonette, milori green, moleskin, monsignor, moonlight, moss green, mouse gray, mulberry, mummy, murrey, myrtle, naphthol yellow, navy, navy blue, negro, neutral tint, new blue, ocher brown, ocher orange, ocher red, oil yellow, old blue, old gold, old ivory, old red, olive, olive brown, olivesheen, opal gray, opaque color, orange chrome yellow, orange lead, orange madder, orange mineral, orange ocher, orchid, orchid rose, oriole, orpiment, orpiment red, otter brown, oxblood, oxide brown, paint, paintbrush, palette, palette knife, palladium red, pansy, pansy violet, parget, parrot green, partridge, pastel, patina green, pea green, peach, peachblossom pink, peacock blue, pearl, pearl gray, pebble, pelican, pencil, pepper-and-salt, philamot, phosphine, pigments, platinum, plum, plumbago gray, pompadour green, ponceau, pontiff purple, poppy, powder blue, powder gray, prime, prime coat, primer, priming, primrose, primuline yellow, puce, pumpkin, purple lake, purree, pyrethrum yellow, quince yellow, raisin, raw sienna, raw umber, realgar, realgar orange, red lead, red ocher, red pink, regal purple, reseda, resorcin dark brown, roan, roccellin, rose, rose pink, royal pink, royal purple, rubine, ruby, ruddle, russet, saffron, salmon, sand, sap green, scarlet madder, scratchboard, sea blue, sea-water green, seal, serpentine green, shade, shadow, shamrock, shell pink, shellac, shocking pink, siccative, silver, sketchbook, sketchpad, sky blue, slop on paint, smalt, smear, smoke blue, smoke gray, snapdragon, solferino, spatula, spray gun, stain, stammel, steel blue, steel gray, stil-de-grain yellow, stipple, straw, strawberry, stump, sulfur, sunflower yellow, suntan, tangerine, tartrazine, taupe, tawny, tea rose, tempera, tenne, terra cotta, terra sienna, terra umbra, terre-verte, thinner, tinct, tinction, tincture, tinge, tint, toast, toluidine red, tone, topaz, transparent color, trypan blue, turpentine, turps, turquoise, ultramarine, umber, undercoat, undercoating, varnish, vehicle, verd gay, verdant green, verdet, verdigris, vermilionette, violet, viridian, viridine green, wash, wash coat, white lead, whitewash, wine, wine purple, woad, xanthene, xanthin, yellow madder, yellow ocher, zaffer, zinc orange, zinc oxide, zinc sulfide, zinc white
Privacy Policy, About Us, Terms and Conditions, Contact Us
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2
Material from Wikipedia, Wiktionary, Dict
Valid HTML 4.01 Strict, Valid CSS Level 2.1